2,556 research outputs found

    Ten years of INTEGRAL observations of the hard X-ray emission from SGR 1900+14

    Get PDF
    We exploited the high sensitivity of the INTEGRAL IBIS/ISGRI instrument to study the persistent hard X-ray emission of the soft gamma-ray repeater SGR 1900+14, based on ~11.6 Ms of archival data. The 22-150 keV INTEGRAL spectrum can be well fit by a power law with photon index 1.9 +/- 0.3 and flux F_x = (1.11 +/- 0.17)E-11 erg/cm^2/s (20-100 keV). A comparison with the 20-100 keV flux measured in 1997 with BeppoSAX, and possibly associated with SGR 1900+14, shows a luminosity decrease by a factor of ~5. The slope of the power law above 20 keV is consistent within the uncertainties with that of SGR 1806-20, the other persistent soft gamma-ray repeater for which a hard X-ray emission extending up to 150 keV has been reported.Comment: Accepted for publication in Astronomy & Astrophysics. 4 page

    Real time localization of Gamma Ray Bursts with INTEGRAL

    Get PDF
    The INTEGRAL satellite has been successfully launched in October 2002 and has recently started its operational phase. The INTEGRAL Burst Alert System (IBAS) will distribute in real time the coordinates of the GRBs detected with INTEGRAL. After a brief introduction on the INTEGRAL instruments, we describe the main IBAS characteristics and report on the initial results. During the initial performance and verification phase of the INTEGRAL mission, which lasted about two months, two GRBs have been localized with accuracy of about 2-4 arcmin. These observations have allowed us to validate the IBAS software, which is now expected to provide quick (few seconds delay) and precise (few arcmin) localization for about 10-15 GRBs per year.Comment: 6 pages, latex, 3 figures, submitted to Adv. Sp. Res., Proceedings of the 34th COSPAR Scientific Assembly, Houston, 10-19 October 200

    Constraints on Lorentz Invariance Violation using INTEGRAL/IBIS observations of GRB041219A

    Get PDF
    One of the experimental tests of Lorentz invariance violation is to measure the helicity dependence of the propagation velocity of photons originating in distant cosmological obejcts. Using a recent determination of the distance of the Gamma-Ray Burst GRB 041219A, for which a high degree of polarization is observed in the prompt emission, we are able to improve by 4 orders of magnitude the existing constraint on Lorentz invariance violation, arising from the phenomenon of vacuum birefringence.Comment: 5 pages, 3 figures, accepted for publication as a Rapid Communication in Physical Review

    Neuronal microRNA eeregulation in response to Alzheimer's disease Amyloid-β

    Get PDF
    Normal brain development and function depends on microRNA (miRNA) networks to fine tune the balance between the transcriptome and proteome of the cell. These small non-coding RNA regulators are highly enriched in brain where they play key roles in neuronal development, plasticity and disease. In neurodegenerative disorders such as Alzheimer's disease (AD), brain miRNA profiles are altered; thus miRNA dysfunction could be both a cause and a consequence of disease. Our study dissects the complexity of human AD pathology, and addresses the hypothesis that amyloid-beta (Abeta) itself, a known causative factor of AD, causes neuronal miRNA deregulation, which could contribute to the pathomechanisms of AD. We used sensitive TaqMan low density miRNA arrays (TLDA) on murine primary hippocampal cultures to show that about half of all miRNAs tested were down-regulated in response to Abeta peptides. Time-course assays of neuronal Abeta treatments show that Abeta is in fact a powerful regulator of miRNA levels as the response of certain mature miRNAs is extremely rapid. Bioinformatic analysis predicts that the deregulated miRNAs are likely to affect target genes present in prominent neuronal pathways known to be disrupted in AD. Remarkably, we also found that the miRNA deregulation in hippocampal cultures was paralleled in vivo by a deregulation in the hippocampus of Abeta42-depositing APP23 mice, at the onset of Abeta plaque formation. In addition, the miRNA deregulation in hippocampal cultures and APP23 hippocampus overlaps with those obtained in human AD studies. Taken together, our findings suggest that neuronal miRNA deregulation in response to an insult by Abeta may be an important factor contributing to the cascade of events leading to AD.N.S. is supported by the Human Frontier Science Program. L.I. is supported by the National Health and Medical Research Council (NHMRC) and the Australian Research Council (ARC), and J.G. is supported by grants from the University of Sydney, the National Health and Medical Research Council (NHMRC), the Australian Research Council (ARC), and the J.O. & J.R. Wicking Trust. Postgraduate scholarship support has been provided by the Wenkart Foundation, GlaxoSmithKline and Alzheimer’s Australia

    INTEGRAL discovery of persistent hard X-ray emission from the Soft Gamma Ray Repeater SGR 1806-20

    Full text link
    We report the discovery of persistent hard X-ray emission extending up to 150 keV from the soft gamma-ray repeater SGR 1806-20 using data obtained with the INTEGRAL satellite in 2003-2004. Previous observations of hard X-rays from objects of this class were limited to short duration bursts and rare transient episodes of strongly enhanced luminosity (``flares''). The emission observed with the IBIS instrument above 20 keV has a power law spectrum with photon index in the range 1.5-1.9 and a flux of 3 milliCrabs, corresponding to a 20-100 keV luminosity of ~10^36 erg s^-1 (for a distance of 15 kpc). The spectral hardness and the luminosity correlate with the level of source activity as measured from the number of emitted bursts.Comment: 5 pages, 3 figures, Revised version accepted for publication in Astronomy and Astrophysics Letter

    Long term hard X-ray variability of the anomalous X-ray pulsar 1RXS J170849.0-400910 discovered with INTEGRAL

    Full text link
    We report on a multi-band high-energy observing campaign aimed at studying the long term spectral variability of the Anomalous X-ray Pulsar (AXP) 1RXS J170849.0-400910, one of the magnetar candidates. We observed 1RXS J170849.0-400910 in Fall 2006 and Spring 2007 simultaneously with Swift/XRT, in the 0.1-10 keV energy range, and with INTEGRAL/IBIS, in the 20-200 keV energy range. Furthermore, we also reanalyzed, using the latest calibration and software, all the publicly available INTEGRAL data since 2002, and the soft X-ray data starting from 1999 taken using BeppoSAX, Chandra, XMM, and Swift/XRT, in order to study the soft and hard X-ray spectral variability of 1RXS J170849.0-400910. We find a long-term variability of the hard X-ray flux, extending the hardness-intensity correlation proposed for this source over 2 orders of magnitude in energy.Comment: 5 pages, 2 figures, accepted for publication in Astronomy & Astrophysics main journa

    Discreteness effects in simulations of Hot/Warm dark matter

    Full text link
    In Hot or Warm Dark Matter universes the density fluctuations at early times contain very little power below a characteristic wavelength related inversely to the particle mass. We study how discreteness noise influences the growth of nonlinear structures smaller than this coherence scale in N-body simulations of cosmic structure formation. It has been known for 20 years that HDM simulations in which the initial uniform particle load is a cubic lattice exhibit artifacts related to this lattice. In particular, the filaments which form in such simulations break up into regularly spaced clumps which reflect the initial grid pattern. We demonstrate that a similar artifact is present even when the initial uniform particle load is not a lattice, but rather a glass with no preferred directions and no long-range coherence. Such regular fragmentation also occurs in simulations of the collapse of idealised, uniform filaments, although not in simulations of the collapse of infinite uniform sheets. In HDM or WDM simulations all self-bound nonlinear structures with masses much smaller than the free streaming mass appear to originate through spurious fragmentation of filaments. These artificial fragments form below a characteristic mass which scales as mp1/3kpeak2m_p^{1/3}k_{peak}^{-2}, where mpm_p is the NN-body particle mass and kpeakk_{peak} is the wavenumber at the maximum of k3P(k)k^3 P(k) (P(k)P(k) is the power spectrum). This has the unfortunate consequence that the effective mass resolution of such simulations improves only as the cube root of the number of particles employed.Comment: 14 pages, 13 figures, Accepted for publication in MNRA

    Evidence for the PSL(2|2) Wess-Zumino-Novikov-Witten model as a model for the plateau transition in Quantum Hall effect: Evaluation of numerical simulations

    Full text link
    In this paper I revise arguments in favour of the PSL(2|2) Wess-Zumino-Novikov-Witten (WZNW) model as a theory of the plateau transition in Integer Quantum Hall effect. I show that all available numerical data (including the correlation length exponent ν\nu) are consistent with the predictions of such WZNW model with the level k=8k=8.Comment: 11 pages, no figure
    corecore